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Dynamical stability and quantum chaos of ions in a linear trap
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The realization of a paradigm chaotic system, namely, the harmonically driven oscillator, in the quantum
domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of
regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.

PACS numbgs): 42.50.Vk, 05.45.Mt, 32.80.Pj

I. INTRODUCTION are very general phenomena in nonintegrable quantum sys-
tems, and can be thought of as “quasiparticles” of quantum
One of the major difficulties in developing quantum tech-chaos(for more details, see Chap. 9 of Reichl’s recent book
nologies, such as quantum computgts?], is the different [18], which is devoted to the transition to quantum chaos
kinds of specifically quantum dynamical instabilities that cancaused by interaction of QNR'sUntil now, QNR effects
occur due to interactions between different degrees of freehave been experimentally investigated using Rydberg atoms
dom and resonant interaction with the external fields. Thesi a resonant microwave fiel[d 9]. Understanding the insta-
instabilities differ from dynamical instabilities in classical bilities connected with overlapping QNR’s is important for
systems, which are usually connected with the strong deperundamental problems related to the transition to quantum
dence of trajectories on the initial conditions and on the valchaos, and for the design of experimental devi@sh as
ues of parameters. Small variations of initial conditions orquantum computers based on ion tiaipswhich these insta-
parameters lead to large deviations in the time of the correbilities may cause significant problems. To study the charac-
sponding trajectories. If the speed of this deviation is expoteristic parameters of both isolated QNR'’s and the problems
nential, the system becomes chaotic, and the appropriatelated to interaction of QNR’s, it is important to choose a
methods of description are statistical rather than determinisnodel which(a) involves a regulatedand relatively small
tic. However, for quantum systems, the notion of a trajectorynumber of interacting QNR'’s; antb) can be implemented
is not well defined. This is one of the main reasons why mosexperimentally in quantum and quasiclassical regions of pa-
of the well-developed methods for stability analysis cannotameters.
be directly applied to quantum systems. Moreover, as was In this paper we introduce a quantum model which is
first shown theoretically by Berman and Zaslav§By] (see  convenient for the investigation of quantum dynamical insta-
also Ref.[5]), even in a “deep” quasiclassical region, clas- bilities and the transition to quantum chaos based on the
sically chaotic systems can have a quantum dynamics that verlapping of QNR’s. The model consists of a single ion
very different from the corresponding classical dynamics. confined in a radio-frequency Paul trap, which interacts with
Another important phenomenon which takes place ina resonant laser field. In the classical limit, this model re-
quantum systems which are classically chaoticjisntum  duces to the well-known model of a linear oscillator interact-
nonlinear resonancéQNR), which was first introduced and ing with a plane electromagnetic wave, and was investigated
investigated theoretically by Berman and Zaslavgky. in Ref.[20-22 (see also references thergiifhe main ad-
QNR'’s are guantum manifestation of nonlinear resonancegantage of our model is that the number of interacting
which play very important role in classically chaotic systemsQNR'’s can be regulated, for example, by varying the inten-
[7-10. Interactions of QNR’s are known to be intimately sity of the laser radiation, which is difficult to achieve in
connected to the transition to quantum chplbis-17. In the  other models based on the kicked interac{ia@—2§.
simplest situations, QNR’s occur when a bound quantum Devices based on trapped ions have been used to investi-
system whose energy levels are not equally spaced is drivegate experimentally fundamental aspects of quantum me-
by a resonant perturbation. A QNR is characterized by twahanicg 29,30, as well as for important technological appli-
main parameters: the number of quasienergy levéfs, cations such as optical frequency standaf@i] and
which are “trapped” in the potential well of the resonance, quantum computing1,32]. lons are confined by a combina-
and the characteristic frequency of slow phase oscillationgjon of a rotating quadrupole potentiéhduced by the rod
Q. Isolated QNR’s imply stable quantum dynamics; over-electrodesand a weak electrostatic potentiaiduced by the
lapping QNR’s cause a transition to quantum chaos. QNR’sonical endcap electrodesThe ions, once trapped, can be
cooled by standard Doppler cooling and by an optical pump-
ing method(“sideband cooling’), which can cool multiple
* Author to whom correspondence should be addressed. Electronions down to the quantum-mechanical ground state of the
address: Electronic address: gpb@lanl.gov trapping potential. In an ion trap quantum computer, infor-
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mation can be stored in the internal quantum states of the
ions (which constitute the quantum bits, or “qubits” of the
compute), and, using ultranarrow bandwidth lasers, quan-
tum gate operations can be realized between pairs of qubits
using quantum states of the collective motion of the ions in
the harmonic confining potential as a quantum information
bus[33]. As such devices are specifically designed to inves-
tigate experimentally the preparation, evolution, and mea- Interference
surement of quantum systems with large dimension Hilbert region
spaces, the linear ion trap is an ideal apparatus to investigate

the problems of quantum-dynamical stability, the transition g 1. A schematic diagram of an ion in a linear trap to illus-

to quantum chaos, and the spectroscopy of quantum nonlifrate the notation and configurations of the laser fields.
ear resonances. In this paper, we present the main elements

of the derivation of our model—a quantum linear oscillator ;- Hamiltonianf, . Such Raman interactions between la-

drl_ven by a mono_chromatlc wave, and the_ preliminary aN35ers and ions are a standard technique, and are described in
lytical and numerical results on the classical and quantu

d os in diff  rea ¢ ; Wetail elsewherg34]. The ion, confined in the harmonic trap-
ynamics n difierent regions ol parameters. ing potential, will have many quantum levels associated
The paper is organized as follows. In Sec. Il, the theory o

. : ; : ith both internal(atomig variables and extern&motiona
how a trapped ion can be driven by laser fields in the mannej ( 9 in )

of the harmonically driven oscillator is described in detall egrees of freedom. We will confine our attention to two
. . L . manifol f h t r in ener n re-
We decided to present a detailed derivation of the Hamil- anifolds of such states, separated in energy by an appre

tonian b itis i tant f Ustificati fth q Iciable amountsee Fig. 2 What we have in mind is a lower
onian because It IS important for a justification of the moael,,, i q consisting of the magnetic sublevels of our ion,
we use and for fitting the parameters in the experiment

®ach level having a series of sidebands associated with exci-

which are planned in the future. It should be noted in Palation of quanta of the external harmonic oscillations; the

ticular how similar the arrangement and laser requirementapper manifold would then be the sublevels of an excited

are to those employed in lon trap quantum computer experig o of he ion, with similar sidebands. The lasers with
ments. In Sec. lll, thelassicaltheory of the harmonically

dri lator is di 4 th i th is d which the ion is interacting will be detuned from the optical
riven oscifiator 1S discussed; the quantum theory IS 0y, qiinn petween the upper and lower levels, so that there is

scribed in Sec. IV. The connection of this system with the L " X )
solid-state Anderson localization model is described in Seca negligible probability of any of these levels becoming ex

) . . . cited: the lasers only cause a redistribution of population
V. The results of numerical simulations are presented in Se%mong the lower manifold of levels. The upper levels may

VI ngl_;;onilude th|s_ papterl W'thf.a ?r'Ef discussion of thethen be adiabatically eliminated from the problem, and one
possIbiliies Tor experimental verincations. can therefore show that the matrix elements of the effective

interaction Hamiltonian for the lower manifold is given by
Il. RAMAN INTERACTIONS OF LASERS the formula[34]

AND TRAPPED IONS

In this section we derive the Hamiltonian describing a ~ o af)*
ion interacting wi olds MIFIN=-3 3
trapped ion interacting with laser fields in the manner of a T 5 Ah(w — on—o,)
harmonically driven oscillator. One of the goals of the '
present investigation is a theoretical analysis of an experi- Xexgi(w,— w,)t], (2.2

mentally realizable dynamic system, and, in order to facili-
tate the interface between theory and experiment, we de-

scribe the laser-ion interaction in some detail. A single ion L Mligﬂzrld
confined in a linear rf trap may be described by an effective A
Hamiltonian given by the formula ;
i Detuning
A 1.1 9np A 1 oy-0p-0y
H—%p +§mwx +H,, (2.2
Laser

wherem is the mass of the iorx (f)) is the position(mo- I~ (frequency @)
mentum operator for the ion, and is the angular trapping
frequency. We are only considering motion of the ion along
one direction, namely, the axis of weak confinement of the
trap; the ion is strongly confined along the other two direc- M) Nh?]‘ivfirld

tions, transverse to the axis, and so we will assume that the
motion in those directions can be neglectede Fig. L

We will employ the interference of two laser beams act- FIG. 2. A schematic illustration of the energy levels of a trapped
ing on the ion to realize experimentally our desired interac-on.
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where the sum involvingl is over all of the upper manifold we obtain the following formula for the Hamiltonian opera-
levels and the two sums involving and «’ are over all of  tor for the lower manifold states:
the applied laser fields, the Rabi frequency of tith laser

being defined by Hi=2 k(10| e)(], (2.10

v
RO =(M[dE(N)[L). 2.3
where
In Eq. (2.3, d; is theith component of the dipole moment ( |a.|)\><)\|a_| )
operator[i=(1,2,3), standing for the three Cartesian com- P (F,t)=—2 el b VA b 1104
ponents of a vector, and summation over repeated indices ~ “” AR Ay
being implied, E{*) is theith component of the electric field (211

from the Cfth Iaser_(wh|ch is a function of the ion’s po_smon and the total laser fiel&; is the sum of the different laser
operatorr), fwy, is the energy of théMth lower manifold components:

level, i w, is the energy of th&th upper manifold level, and

w, is the angular frequency of theth laser. N (@), 2 ,

To proceed, we will make a distinction between internal Ei(r't)zg Ei(rexpliw,t). (212
and external degrees of freedom. We can form a basis set for
the Hilbert space from a tensor product of a set of internal
guantum levels with a basis set for the external degrees of
freedom(for example, the Fock states of the harmonic oscil-  Let us now assume that there are only two internal levels
lator). The set of internal states will be divided between thein the lower manifold, which we will denotdl) and|2). As
upper and lower manifolds. Thus we will make the substitu-will be discussed below, this is a reasonable assumption to
tion make for the atomic systems we have in mind. Also, we

introduce a special coordinate system: the two internal levels
IL)—= M, (24 are split by a magnetic field acting along thexis, which is
the axis of quantization for the internal levels of our ion. The
M) —[u)m), (2.9 other two axes are thX and Y axes. These axes duot
necessarily coincide with the, y, and z directions intro-
IN)—[v)[n), (2.6 duced to describe the motion of the ion in the trap. In this

. case it is convenient to use the Pauli operators for the sys-
where|m), [n), and|l) are members of the basis states foram,-

the motion degrees of freedof,) is a member of the upper

Ei(r.OES(r,1),

A. Two-level systems

internal manifold, andix) and|v) are members of the lower o1=|1)(2|+|2)(1], (2.13
internal manifold. In this notation, the matrix elements of the
Hamiltonian equatiori2.2) become: &ZZi(|1><2|_|2><1|)1 (2.14
m|A,|n ~
(l(miFhm1v) &s=12)(2] - |1)(1. 2.15
— _z E 2 <“|d‘|)‘><}‘|di|”> Using these operators the Hamiltonian can be written as
N T ae (0w, 0t o — o)

A o H,=ho(r,t) +hi(r,t)a;, (2.1
X(MIELDEL ™ (N)|n)exfi (@~ w ).
2.7 wherel is the identity operator|()(1|+|2)(2|), and

. . . 1
The average detuning of theth upper manifold level is he(f 1) == rt)+ [t 21
defined to be ol =3lrua(r.O+ kzdr.), 219

A== @y~ 0, =9 M=k AP0+ koF0) (218

Whereﬁay is the average energy of the lower manifold and

Ea is the average of the laser frequencies. We will assume hz(F t)=i.[K12(F )= Ky 1(F 6] (2.19
that, in the denominator of the fraction appearing in Eq. o2 e s
(2.7), we can make the following approximation:

- 1 - -
O\~ W, W T O —w,~A, . (2.9 hg(r,t)=§[K2'2(r,t)—Klll(l',t)]. (2.20

If we use the completeness property of the external basigor the special case that the lower manifold of internal states
stateg(i.e., = |1)(I|=1, wherel is the identity operatorthen  consists of two magnetic sublevels of tRS,,, ground state
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of an alkali like ion, and the upper manifold is the two sub-where() = w,— ws. The parameters andk, which will fea-
levels of the?P,,, excited state whose Zeeman splitting is ture prominently in what follows, are given by

not too large, the atomic matrix elements appearing in Eq.

(2.11) can be calculated in closed form. As a result the com- Amegk

ponents ofh appearing in Eq(2.16 reduce to the simple 5 |EPEO*], (2.29
. 2kgA
forms (see Appendix A
hoF,1) =~ X|E( DI, K=ok e (220
~ ~ R whereeg, is the unit vector along thg axis, i.e., the axis of
hy(r,t)=2x Im{E(r,t)EZ(r,1)}, weak confinement in the trap.
A A A (2.21
ho(r,t)=2x Im{Ex(r,t)E3(r,t)}, lll. CLASSICAL LIMIT
ha(F,t) =2y Im{Ex(f,t)E’;(F,t)}, In the classical limit p—p,x—Xx), the Hamiltonian

(2.24) takes the form

where In{- - -} is the imaginary part of the quantity in curly 2 medd
brackets, an@(:AWGO/4k8A (ko and A are, respectively, H= L + @ + fcog kx—Qt). (3.2
the wave number and Einstefncoefficient for the transition 2m 2 k
between the upper and lower manifoldsis the laser detun-
ing ande, the permittivity of free spage

The quantity proportional th(r,t) in Eq. (2.16) repre- ) ) D
sents a dynamical effect of the laser fields on the ion which p=— v Mmw?X+ e sinf(kx— Qt), x=-—= o
does not cause any effect on its internal degrees of freedom; P 3.2

the term proportional tds(r,t) represents an ac Stark shift
of the two internals levels; the terms proportionahtdr ,t) Equations(3.2) lead to the following second order nonlinear

and h,(f,t) represent transitions between the two levels ofdifféerential equation:
the lower manifold. If we make the requirement that the
lasers are plane polarized along the axis of quantizafion X+ w2x= isin(kx—()t). (3.3
then it is clear from the above formulas that=h,=h, m
=0, and only the first term involvin@, has any effect.
Let us assume that two laser beams, designated the pump A. Dynamics near resonances
(p) and Stokegs) beams, are present, both plane polarized in
the Z direction, i.e.,

The classical equations of motion ip,k) variables are

Assume that the driving frequency is close to a resonance,

ie.,
Ex(r,t)=0, No~Q, (3.9
Ey(r,t)=0, whereN is an integer. In this case it is convenient to describe
a classical dynamics using the “action-angle” variables
E,(F,H)=EPexd —i(ky T — w,t)]+EO [20-27 (1,¢), which are related to the variablep,k) by
P P the canonical transformatioisee Appendix B
xexg —i(kg F— wgt)]. (2.22
B 2NI ¢+ Ot B \/7 e+ Ot
The interaction Hamiltonian in this case is given by =\ om0 P~ VeNlemsin —g—/.

(3.9

In the variables I, ¢), the Hamiltonian(3.1) takes the form

A, = x{|EP|2+ |E®)|2+ 2| EPEOH|
xcog (ky—ke) T—(wp—wt+ ]}, (2.23

€ 2NI
where ¢=Arg{EPE®*} is the phase difference between H=(No—-Q)I+ Eco{k Vw—mcosd)—ﬂt), (3.9
the two lasers. The constant terms involvifig®|?> and
|[E®)|? have no effect on the evolution, and so will be ne-yhere
glected. Thus the full Hamiltonian, including the effect of the

harmonic evolution of the ion along the weak axis of the trap o+ Ot

(but excluding the internal free evolutigris b=—N (3.7
~ 52 mw?x? & - The second term in Eq3.6) can be expanded as a series of
H=om T 2 Tcodkx=ay, (224 pegsel functions, (2):

023403-4
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[2NI
cos( k\/——cos® — Ot
wm

- 2NI
= > Jn(k\/—>coin(<b+w/2)—ﬂt]. (3.9
n=—o mMw
We have, for the phase(® + 7/2)— Qt,
b+a2)-at=nd+ T NG 3.9
n( + )_ t—nﬁ+7+T t. ()

Thus the classical Hamiltoniai3.6) can be represented in a

PHYSICAL REVIEW A 61 023403

Usually, the critical parametes., in Eg. (3.18 should be
found numericallysee Sec. ¥ Under condition3.18), clas-
sical dynamics can be approximately described by the
Hamiltonian Hy [Eg. (3.11)]. The corresponding approxi-
mate equations of motion follow from Eg8.14) and(3.16):

(9(p k N( ) I ); ( .
—_—N Q \'—, 77N/2

form where the unperturbed part and the perturbation arén the general casgor ¢ large), it is more convenient to use

explicitly separated,

H=Hy+H, (3.10
where
€ 2NI
HOZ(NW_Q)H'EJN k . cog ¢ +Nm7/2),
(3.11)

€ 2Nl n nTt n—N
Him:E ;N J| k m CcO N¢+7+Tﬂt .
n

the following exact equations written in,) variables:

. e 2NI 2Nl e+ Ot
|=—=v/——sink\/—co -t
N V mo mw N
o+ Ot
X sin , (3.21
N
=N Q /[ N il k [2NI o+ Ot Q
e=Nw—l—¢ msm mCO N —Ot
o+ Ot
X CO N (3.22

B. Dimensionless variables

To describe both the classical and quantum dynamics, it is
convenient to introduce the dimensionless variables

|
r=wt, &=KkX, |:%,
Ho Hint H
Mo~y MR, MTRe B2
and the dimensionless parameters
ek 5 fk? QO 52N
“The? 7 T 2me’ P o TNT A
(3.29

The parameter; is the Lamb-Dicke parameter used in the
theory of ion traps to quantify the strength of confinement.

C. Isolated nonlinear resonance

Using Eqgs.(3.23 and(3.24), from Egs.(3.19 and(3.20
we have the approximate dimensionless equations of motion

(3.12
In the (I,¢) variables, the classical equations of motion are
i JH
=
8 .
ZEJN(Z)Sln((p-l-ﬂ'N/Z) (3.13
+s 2 ] [n +n77+n—N 31
KN 2, nJ,(z)sin Nt N | (3.19
'—ﬁH—N Q+e/ N 3 N/2
(p—ﬁ— w—)+e m n(z)cog o+ )
(3.15
N N 2 3 n +n7-r+n—N
¢\ 2mel 2, V(D0 et 5t )
(3.16
where
v 2NI 31
VAS m—w ( . D

is a dimensionless variable. Equatiai3s14) and(3.16) are

convenient when analyzing the classical dynamics in the vi-
cinity of the resonancgEq. (3.4)]. This case corresponds to

small values ofs:

(3.18

e<éggr.

in the vicinity of the resonances.4),

Al __ Mo € 5 (2s N/2 3.2
dr- e 2.7 n(2)sin(e+7N/2),  (3.29

do_To_s G\FJ’ N/2
dr ot 0t g, Nu@codet aNi2),
(3.26

023403-5
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where z=2#%+/NI, and the dimensionless resonant Hamil- 1 1/2 \/_ .
tonian is n)= =|————| H.(&\2ne &
Y= n(£) e B CACL
€ (4.9
Ho=16+ ZZJN(Z)cos(<p+ 7N/2). (3.27

whereH ,(y) is a Hermite polynomial. Although these eigen-

The classical dynamics corresponding the Hamiltoniafunction may appear somewhat unfamiliar because of the use

(3.27) we shall call “nonlinear resonance.” of dlmens!onless variables, they are in f_act th_e ;tandard
To estimate the region of parameters of validity of Eqs.8igenfunctions of an unperturbed harmonic oscilldice.,

(3.25 and (3.26), their solutions should be compared with the Hamiltonian given by Eq(2.1) with H;=0]. The nor-

the solutions of exact equatiof3.21) and(3.22. Equations  malization condition for the eigenfunctiop,(&) is

(3.2) and (3.22 in the dimensionless variables have the

forms f (&) b £)dE= 81 4.
dl e\/T . o+ uT fetuT -
dr 7 NSIr{ch’E( N RN TN To describe the quantum dynamics we represent the wave
(3.28  function in Eq.(4.2) by the form
de € \/N ] o+ ur ot+ur ~
T TSW{ZCOS( . —w}cos( . ) V(En)= 3 ca(ndu(6). @7
(3.29

From Eq.(4.2 we have the equations for the complex am-

Equations(3.28 and (3.29 are derived from the exact di- plitudes, c, (7):

mensionless Hamiltonian

+ _dC (T) €
H=16+ #COE{ZCO% ¢ N/M —ur|. (330 ! g‘T =(m+1/2)cy(7)+ 2—772
In the dimensionless variablé€8.23 and (3.24), Eq. (3.3 e
takes the form X > (m|cog £— ur)|nYea(7)
n=0
d?¢ .
P+§=ESIM§—MT). (3.3

€ ~ .
=(M+12cn(N+ 2> (€ “Frn(n)
477 n=0 '
IV. QUANTUM EQUATIONS OF MOTION

In the dimensionless notatigiqgs.(3.23 and(3.24)], the
guantum Hamiltoniari2.24) takes the following form in co-
ordinate representation:

+e#TFE (m)en(7). (4.9

H 1 ) , 78
(4.1

The Schrdinger equation for the Hamiltoniai.1) is

LIV (&,7)

———=[flotecodé—un]¥(£7), (4.2

i27y
where™, o is the Hamiltonian of a linear oscillator:
52 2

7:(|_o:—2774&—€:2+7. (43)

For ho we have the well-known eigenvalue problem

Hiolny=27%(n+1/2)|n), (4.9
FIG. 3. Energy levels of a Caion. Wavelengths and radiative
where lifetimes are shown. See R¢B3] for references.
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Phase Space (&, d&/dt); u=3.99

PHYSICAL REVIEW A 61 023403

e=2.0 e=2.5
20.0 . : . 20.0 . ;
10.0 1 100}
0.0 . 0.0 |
-100 | 1 100}
-20.0 . . ' -20.0
2200 -10.0 00 100 200 =200
e=3.0
20.0 . : . 20.0
10.0 | 1 100}
0.0 . 00 |
-10.0 + 1 00}
_20.0 L L . _20.0 L L . FIG. 4. Classical phase spa@ieoincaresec-
(@ ~-200 -100 00 100 200 ~-200 100 00 100 200 tion). Trajectories with different initial conditions
are shown. The values af are indicated in the
Phase Space (&, dé/dt); n=3.99 figure: (a) e=2, 2.5, 3, and 4(b) e=5, 8, 10,
50 80 and 20;7=0.45;N=4 and5=10"2.
20.0 . . . 0.0 . . . .
300 | —
10.0 | 20.0 + :
10.0 [ :
0.0 00 | -
-100 | .
-10.0 -20.0
-30.0 | :
-20.0 ' : ' -40.0 ! ' ! !
-200 -100 00 100 200  -40.0 -250 -100 50 200 350
£=10.0 £=20.0
40.0 r : . : : 40.0 . :
30.0 -
200 1 200} .
10.0 [ .
0.0 - 00 | .
-100 | -
-20.0 | {1 200} .
-30.0 | :
(o) 0000 250 100 50 200 350 Ligo 200 00 200 400

In Eq. (4.8), Fnn(7) is the matrix element:

Fm,n( 77):<m|ei§|n>

1 ®
- R |f7me(U)
T2 m!n!

Equation(4.8) is used below, in Sec. V, for numerical cal-

Ho(uye v+ 12mdu,

4.9

culation of the quantum dynamics of the system.

V. RESULTS OF NUMERICAL CALCULATIONS

Hamiltonians have the form given by E(R.24. We have
used a set of parameters which will allow easy experimental
verification of our predictions using the type of ion trap ap-
paratus currently being used to investigate quantum compu-
tation.

If we use the geometry for the pump and Stokes lasers
shown in Fig. 1, the parametérdefined by Eq.(2.26) is
given byk=cosé(k,+k)~2kycosé. The laser field strengths
|E(®| and|E®)| can be related to the power in the pump and
the Stokes beams, respectively. It is usual to generate one of
these beamsthe Stokes, sayby frequency modulation of
the pump beam, so that the beam parameters will be similar

In this section, we present results of numerical simulafor them both. The power in the pump beam is given by the
tions of classical and quantum dynamics of systems whost®rmula (Ref.[35], p. 488

023403-7
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Evolution &(1); u=3.99

PHYSICAL REVIEW A 61 023403

e=0.0
2-5 T T T T 7'0
2.0
-3.0
25 1 ( | 1 . 1 ( 1 (
0.0 200 400 600 80.0 100.0 0.0 20.0 400 600 80.0 100.0
e=1.0 e=2.0
10.0 T . . . 10.0 . . . . FIG. 5. Time evolution of the dimensionless
50 50 | J classical amplitude of oscillationg 7) for e=0,
0.0 0.0 ] 0.5, 1, 2, 5, and 8. The maximum time of simu-
' ' lation is tp,,=31.8 us. Initial condition:
50 —or (£.déld)=(0,0).
-10.0 ! L L L ~10.0 I I I 1
0.0 20.0 40.0 60.0 80.0 100.0 0.0 20.0 400 600 80.0 100.0
e=5.0 £=8.0
1.0 . . . . 1.0 . . . .
0.5 w {05 |
0.0 0.0 WW‘W
—05 | W -05
1.0 1 ( | 1 1.0 1 ( 1 (
0.0 20.0 40.0 600 80.0 100.0 0.0 20.0 400 600 80.0 100.0
T T
ceom , wheres=|E®)|/|EP| is a dimensionless parameter of order
P= wg|E(P)|2, (5.)  unity which can be controlled experimentally.

wherew, is the laser spot sizé.e., the 162 radius of the

intensity distribution. If we substitute this result into Eq.

Singly ionized calciumifi=6.64x 10" 2% kg) is common
ion in use by several groups worldwide for ion-trap quantum
research(see Fig. 3 for energy levels of this iprFor the
23,,-2P4, transition in this ion(wavelength\ o=397 nm)

(2.29, we obtain the following expression for the dimen- the EinsteinA coefficient is[33] A=1.30x10° s, and the

sionless parameter.

wave number iko=27/Ao=1.58<10" m~ 1. If we assume
a laser power of 10 mW, a spot simg=20 um a trapping

sk SAP frequency w=27Xx500 kHz, and a detuningA=2m
€= 7= >~ —SCOS 0, (5.2 X1.0 GHz, thene=1333%cos 6. Thus by varying the ex-
@ ckomwwgA perimental free parametessand #, one can achieve a large
Time Evolution: &(t); p=3.99
=100 =20
1.0 . . . . 20.0 . . . .
05 4100
0.0 0.0
-05 -10.0 . ) . .
FIG. 6. Chaotic dynamics of the dimension-
1.0 s . . . 220.0 . s . . less classical amplitude of oscillatiod§7) for
0.0 20.0 400 60.0 80.0 100.0 0.0 20.0 400 60.0 80.0 100.0 the value35=10, 20, 30, and 40. The maximum
=30 £=40 time of simulation ist,,,=31.8 us. Initial con-
20.0 . ; . . 20.0 . . . . dition: (£,dé/d7)=(0,0).
10.0 + 1 100 1
0.0 0.0 J ¥
-10.0 41 -10.0 r
-20.0 ! ! L L -20.0 L ! ! L
00 200 400 600 80.0 100.0 00 200 400 60.0 80.0 100.0
T T
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Fourier Transformation: Re F[&(T)](v); p=3.99
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A. Simulation of classical dynamics

In Figs. 4a) and 4b), the classical phase spa@®oincare
section is shown in the £,dé/d7) plane, for seven initial
conditions, and for different values of the dimensionless
driving force e, which characterizes the intensity of the laser
beams, and is defined in E¢b.2). To derive these results,
Eq. (3.31) was solved numericallffor N=4 ands=102).
These are “stroboscopic” plots, i.e., the values éfdé/d )
are plotted for times separated by the dimensionless period:
wT=27w/Q)=2x/n. One can see from Fig.(d), that for
small values ok (e<2) the classical dynamics is regular in
some regions of the phase space. Note that even at these
values ofe there exist relatively large regions in the phase
space with a chaotic component. When the interaction pa-
rametere increases, the regions with the regular classical
dynamics become smaller. As one can see from Fig), 4
even ate=4, the dynamics in the region of the phase space
corresponding to the “classical ground statéCGS [the
vicinity of the point(0,0)] remains regular. At larger values

FIG. 7. Frequency Fourier spectrum of the classical amplitudedf € (e~8) the CGS becomes chaotic. This transition is
&(7) for e=0, 0.5, 1, 2, 5, and 8. The transition to chaos appears alemonstrated in Fig.(8). Figures 5 and 6 show the time
e~8. Initial condition: ¢,d&/d7)=(0,0).

dynamic range for the dimensionless driving foreeThe

evolution of the dimensionless classical coordinate of the
ion, ¢(7). The maximum dimensionless time of simulations,
Tmax= 100, corresponds to the real time scatg, .,y
=31.8 us (w=27X500 kHz). The initial conditions for

Lamb-Dicke parametey for these parameters is 0.502 @bs the dynamics, shown in Figs. 5 and 6 correspond to the CGS.

The driving frequency() is the difference between the aq one can see from Fig. 5, the chaotic component appears at
pump and the Stokes frequencies. As mentioned above, the§g8 and is well resolved foe>10 (see Fig. 6. The fre-

two beams will be realized by splitting one parent beanguency Fourier transform for the dynamics, shown in Figs. 5
using a beam splitter and then frequency modulating one oinq 6, is presented in Figs. 7 and 8. It is well known that the
the resultant beam using either an acousto-optic or agansition to the dynamical chaos in classical dynamical sys-
electro-optic modulator. In this manner splittings as high agems is accompanied by the transition in the frequency Fou-
)=2mXx100 MHz can be achieved without too much dif- rier spectrum. The regular dynamics corresponds to the dis-
ficulty, so that the dimensionless parametecan be in the crete frequency spectrum, and the chaotic dynamics

range 0—200.

Fourier Transformation: Re F[§(T)1(v); u=3.99

corresponds to the continuous frequency spectrum. This

&=10.0 &=20
0.1 . . . 2.0 . : .
15
01} ]
1.0
0.0 0.5
0.0
-01 F ]
-0.5 ] FIG. 8. Frequency Fourier spectrum of the
—0.1 ' ) ) 10 . ) . chaotic dynamics of the classical amplitugier)
o o5 10 15 20 00 05 1o 15 20 for e=10, 20, 30, and 40. The transition to chaos
=30 =40 appears ate~8. Initial condition: ¢,d¢/d7)
20 2.0 T T T =(0,0)
15 F 15 F ]
1.0 b 1.0 b 3
0.5 0.5 .
0.0 F 0.0 F
-0.5 F i -05F ]
1.0 . s s 10 s . s
0.0 05 1.0 1.5 2.0 0.0 05 1.0 15 2.0
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(0):e=0.0; (1):e=0.5; (2):e=1.0; (3):e=1.5; (4).e=2.0 (p=3.99)
feate 0.40 le,o
(1) ) ) (2) : ' @) j
100 pom e | 030 @ 1
RY I~'\\,,v, \’l ‘\/ LAY \Il [AY R @ )
088 ATV b 020 AR AN A \A 6
ki Iy i s Pl ] VON
0.90 0.10 } ’\\u\ P 1 Y } e
e AW AREEAR
0.85 0.00 PR “..‘s»’f\:/ { }/\"‘é‘j LN AR
X 0.0 5.0 10.0 15.0
ey
0.030 0.020 — r
0.020 0.015 | . ’ @ _ FIG. 9. Dynam|2cs of the quantum probabili-
. oot0 [ R © i ] ties: Pn(7)=[cn(7)| for n=0, 1, 2, 3, 4, and 5,
0.010 \) . I\ i . and e=0, 0.5, 1, 1.5, and 2. Initial condition:
. 0.005 1 a4 1} AN co(0)=1, c,(0)=0 for (n>0
0.000 0.000 lfu.ﬁ'/ '\‘».«:’uv ;.llyf\.\*é*ll-u‘uﬁ\/ly 0( ) ! n( ) ( )
ol 0.0 5.0 10.0 15.0
lestor’
0.015 0.010 T T
0.008 |
0.010
0006 |, @
0.002 | " ~
0.000 0.000 L—coamie it d=b Aoza
I 0.0 5.0
1 T

characteristic modification of the frequency spectrum is demshows the time evolution of the quantum probabilities
onstrated in Figs. 7 and 8. For small values of the dimenP,(7)=|c,(7)|? (n=0, 1, 2, 3, 4, and B for relatively
sionless driving force, one can see only some quasidiscretesmall values ofe=0, 0.5, 1, 1.5, and 2. These probabilities

lines in the Fourier spectrum. When increases, the fre-
guency spectrum transforms to a continuous one.

B. Simulation of quantum dynamics

were chosenN=4, §=10 2, and »=0.45. For the initial
conditions we used the ground state of the unperturbed quatescribe the quantum chaotic motion. Figure 11 shows the

tum linear oscillator,co(0)=1 and 0, forn>0. Figure 9

(1):e=3.0;

XU

(2):6=5.0;

(3):e=7.5;

0.8

0.6

0.4

0.2

0.4

0.3

0.2

0.0 L
0.

(4):e=8.0

are quantities which can be measured by tomographic tech-
nigues[36]. The values ofe correspond to the regular clas-
sical dynamics which starts from the CGS. The time evolu-
tion of quantum probabilitie®,(7) (n=0, 1, 2, and Bfor
larger values ok is shown in Fig. 10. Because the value of
To simulate quantum dynamics, the following parametershe parametee~8 corresponds to the classical chaotic dy-
namics for the initially populated CGS, curved in Fig. 10

dynamics of the probability functioPy(7) for the larger

023403-10

FIG. 10. Dynamics of the quantum probabili-
ties: Pn(7)=|c,(7)|? for n=0, 1, 2, and 3, and
e=3, 5, and 7.5. Initial conditioncy(0)=1,
c,(0)=0 for (n>0).
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Evolution: [c,(t)l”
e=1.0 e=5.0
2.0 T T 15 T T

T

0.0 : . 0.0 !
0.0 10.0 20.0 30.0 0.0 10.0 20.0 30.0

FIG. 11. Dynamics of the quantum probabil-
ity: Po(7)=]|co(7)|? for e=1, 5, 7.5, and 8. Ini-
tial condition: c4(0)=1, c¢,(0)=0 for (n>0).
e=7.5 &80 The transition to quantum chaos corresponds to

. i | - “ ’ :
o S 0 e oLl MR
" 'J}!‘“’o‘»’“w o ] | Gl

time interval: 7e[0,30]. In real time this corresponds to fication of the frequency Fourier spectrum can also be mea-
€[0,9.54 us. As one can see from Fig. 11, fer-7.5 the sured experimentally. In Fig. 13, we show the results of nu-
dynamics of the probability functioRy(7) becomes rather merical simulation of the dynamical evolution of the average
complicated, and corresponds to the classical chaotic motiovalue,(£%)=(W (£,7)|£2| ¥ (£,7)), where the wave function
We hope that this complicated dynamics of the probability¥ (£,7) is defined in Eq(4.7). This dynamical characteristic
functionsP,,(7) can be measured directly in the experimentsis very important for understanding the conditions of stabil-
with trapped ion. Figure 12 represents the results of the nuity of the system under consideration, as it describes the
merical simulations of the frequency Fourier spectiigir) amplitude of the ion’s oscillations in a trap due to the influ-
of the quantum probability functioRy(7). As one can see ence of the resonant laser fields. Experimentally measuring
from Fig. 12, the characteristic qualitative modification of the time dependence of this amplitude is important for char-
the frequency spectruy(v) starts frome>7.5. This modi-  acterizing the regular and chaotic dynamics of an ion. The

Fourier Transformation: Re F[|CU(‘L')|2](V)

e=1.0 e=5.0
1.0 T 1.0 T
0.5 H : 0.5 E
0.0 00 . FIG. 12. Frequency Fourier spectrum of the
0.0 05 1.0 00 05 1.0 quantum probability:Po(7) =|co(7)|? for e=1,
=75 8.0 5, 7.5, and 8. The transition to chaos appears at
1.0 T 1.0 T e~8. The initial conditions are as in Fig. 10.
0.5 . 0.5
0.0 . 0.0 .
0.0 0.5 1.0 0.0 0.5 1.0
v v
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Evolution: <&™>

e=3.0 e=5.0
0.50 . T T .
14 .
0.40 t2r i
0.30 - .
0.20 .
FIG. 13. Dynamical evolution of the average
0.10 s . 0.0 . . value: (£3)=(V(¢,7)|&% P (&,7)), where the
0.0 5.0 10.0 15.0 0.0 5.0 10.0 15.0 wave functionW (&,7) is defined in Eq(4.7). €
=75 £=8.0 =3, 5, 7.5, and 8. The transition to chaos appears
2.0 . — 20 T ' at e~8. The initial conditions are as in Fig. 10.
1.5 b .
1.0 b
0.5 | .
0-0 1 1 0-0 1 1
0.0 5.0 10.0 15.0 0.0 5.0 10.0 15.0

frequency spectrum of the amplitudé?) is shown in Fig.
14 for different values of the perturbation parameielAs

T

T

the same functions is shown in Fig. 16 for larger values of
the parametee=3, 5, 7.5, and 8. Curve) and(4) corre-

one can see from Fig. 14, at>7.5 the frequency spectrum spond to the classically chaotic regime of motion. The maxi-
qualitatively modifies, and includes many harmonics. In Fig.mum simulation time at Fig. 16 i§,,,=4.77 us.

15, we show the time evolution of two functions: the unper-
turbed Hamiltonian of quantum linear oscillatd@.3),

(Hi0), and the amplitudé£?), for the values of the pertur-

bation parametere=0, 0.5, and 2. The corresponding clas-

VI. CONCLUSION

In this paper, we introduced a quantum model which de-

sical dynamics is regular in this case. The time evolution ofscribes a transition from regular dynamics to quantum chaos,

Fourier Transformation: Re F[<§2(t)>](v)

e=1.0 e=5.0
. ‘ . ial . ‘ .
0.40 . 1.2 .
1.0 .
0.8 .
0.20 |- , 06 I
0.4 .
021 1 FIG. 14. Frequency Fourier spectrum of the
0.00 ‘ . ‘ . 0.0 VAN - L4 Frequensy: Foule
00 01 02 03 04 05 00 02 04 068 08 10 guantum amplitude(£®), for e=1, 5, 7.5, and 8.
=75 =80 The transition to chaos appearseat8. The ini-
2.0 . ‘ . 2.0 . ‘ . tial conditions are as in Fig. 10.
15 . 1.5 1
1.0 . 1.0 .
05 . 0.5 - .
0.0 ' 0.0
00 02 04 06 08 1.0 00 02 04 06 08 10
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1=3.99
(1):e=0, (2):e=0.5, (3)e=2
0.35 T T
@® /\ A
/\l [ I ks
o0, [ A A \7 ~ A,
A Y A L DU R AR B A
. [ N N o | N
X025 I' s/ \‘ | \‘ ’/ \‘ | v " A8 \I 'I ]
K Ny o v S \_/
] . @
. - - \,/ - ,/ - ~ . . .
0.20 pmiz==c=ann e e e FIG. 15. Time evolution of two functions: the
(1)/ unperturbed Hamiltonian of quantum linear oscil-
015 55 oo 50 lator [Eq. (4.3)], {H o), and the amplitudé£?),
: for the values of the perturbation parameter
035 =0, 0.5, and 2. The corresponding classical dy-
) ' ' namics is regular in this case=0, 0.5, and 2.
@ \ The initial conditions are as in Fig. 10.
0.30 " N P A
. " N Doy
A Y A U A SO A R N A AN
wn 025 /: \ ’: \ / \\ / \‘ ‘/ \‘ ,/ \\ ' \ \ /' Vo)
v P O N / v N "/
/ \ \ oy . \ /, \‘ ’/ '\ / \/ \/
DT t,-\‘ P N P N SN PR AIP RN -~ - -
020 L= \\:/, W) \// P \\\\ // N
] ¢
1
0.15 @ .
0.0 5.0 10.0 15.0

for a single ion in a linear ion trap. The configuration of the (2.24) is degenerate—it includes “nonlinearity[the term
resonant laser fields allowed us to represent the model in @eoskx—Qt)] and a “perturbation parameter{a parameter
“standard” form. That is, our model formally describes a €) in the same term in the Hamiltoniaf2.24). For these
quantum linear oscillator interacting with a one-dimensionakinds of systems, thé&(AM theory cannot be applied di-
plane wavdsee Hamiltoniari2.24)]. The classical version of rectly, and these systems possess many unusual properties
this model is very important and useful in the theory of the[9]. So quantum analysis of the model described by Hamil-
dynamical chao$9]. This model differs significantly from tonian(2.24) both theoretically and experimentally will be of
the “usual” nonlinear modelgas, for example, a “standard significant importance for understanding complicated dy-
map” [8,10]) considered in theoretical works on dynamical namics in this system, and for applications in different de-
chaos. That is, the model described by the Hamiltoniarvices based on the trapped ions. The instabilities present in

(1):=3.0; (2):e=5.0; (3):e=7.5; (4):e=8.0
3.0 T T T T

FIG. 16. The time evolution of the same func-
tions shown in Fig. 14, but for larger values of
the parametee=3, 5, 7.5, and 8. Curve@®) and
2.0 : T T T (4) correspond to the classically chaotic regime
of motion. The initial conditions are as in Fig. 10.
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the dynamical model studied here may also play a role in the A 3me At . A

ion-trap quantum computer, whose dynamics are somewhat K (1) =——F—Ajj(, V) E((r,)Ef (1,1), (A5)
different in that the external degrees of freedom are coupled 4wpA

to internal quantum states of the trapped i¢sse Ref[1],
and references therginThe numerical results presented in
this paper describe both regular and chaotic quantum dynam- AN 1 3 19,
ics, Wh’ICh starts from the mmgl populanqn of t_he linear 0s- Aij ()= (23, +1) 2 2 ( 2 )
cillator’'s ground state. We believe that this regime of motion mM==Jy qq' =1\ "My q My
should be investigated in the experiments with the trapped

single ion. These experiments will allow one to establish
gualitative and quantitative correspondence between the
guantum dynamics described by Hamiltoni@®29, and the

real system of “a single trapped ion plus resonant lasetf we assume that the lower manifold is t&,,, ground
fields.” Further theoretical analysis and experiments shouldtate of an alkali ion, the two states being denofé
include both pure quantum and quasiclassical regions of ini= 2S,,,,m=—1/2 and|2)=2S,,,,m=1/2, and that the upper
tial population, and the parameters describing regular anthanifold is the?P,,, state, then these tensors can be found in
chaotic regimes in both these regions. These investigatiorgosed forms:

are now in progress.

where the tensoA;;(u,v) is given by

Jj 1 3

X '
-m, q

(M ala’)
m)\)eiq e, (AB)

1 —i
1] .
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Aij(1,9=-Aj(2D=3{ 0 0 —i
APPENDIX A: DERIVATION OF EQ. (2.2)) 1 i 0

The dipole matrix elements appearing in E211) can be  Therefore the cross products involving the electric field com-
written in terms of the Einstei\ coefficient between the ponents with these tensors can be written as follows:
upper and lower manifolds as follows:

1
3AC(20,+1) & [ J, 1 3 A(LDEE] =3[[E+2 Im{EXEY}],  (AB)
. . }
Gy =\ —— @
O e N I &

(A1) Aij(2,2EE} =%[|E|2—2 IM{ExE}}],  (A9)

wherec is the speed of lighty is the fine-structure constant,
wq is the angular frequency of the transition between the ) _ *:E P .

upper and lower manifolds,J( ,m,) are the magnetic quan- Aij(1.2)EE] 3[EZ(Ex+'EY) EZ (Ex+HIEY)],
tum numbers for the upper manifold stdie), (J,,m,) are (A10)
the magnetic quantum numbers for the lower manifold state
|y, the term containing six quantities in brackets is the L 1 I * .

Wigner 3—j symbol, ande(? is theith component of the Aij(2.DEE] =3[~ Ba(Bx —IEy) + Bz (Ex—IEY)].
gth normalized spherical basis vector, viz. (A11)

1 If these results are substituted into the definitionhgfand
eM=——"—(1,-i,0), (A2) h;, Egs.(2.17—(2.20, one obtains Eq(2.21). Similar re-
V2 sults, with slightly different numerical factors, are obtained if
the upper manifold is &P, state.

é9=(0,0,0, (A3)
APPENDIX B: CANONICAL TRANSFORM TO “ACTION-
1 ANGLE” VARIABLES
e~ V="_(1,,0). (A4) _ . . .
V2 The theory of canonical transforms in classical mechanics

is described in detail in Ref37], Sec. 45. We want to trans-
Substituting Eq(Al) into Eqg.(2.11), and assuming that the form from a set of variable,p to a new sefp,l, wherep
Zeeman splitting in the upper manifold is small compared toplays the role of position coordinate ahdhe role of mo-
the overall detuning, so that,~A (independent ok), then  mentum. Such transforms are specified lyeaerating func-
we find that the quantities,, , are given by the formula tion F(x, ¢,t). Then variablep andl and the Hamiltonian in
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the new coordinate system are related~tby the formulas

_6?F
P=7x (B1)
- JF
== (B2)
JF
Hlg,=H(Xx,p)+ —-. (B3)

PHYSICAL REVIEW A 61 023403

For the canonical transform used in Sec. Il A, the generating

function is given by

E Mo, o+ Ot B4
Substituting, we find
o+ Qt
p=—mowxta N | (B5)

|=— %xzse@ QDJFNm , (B6)
H((,D,I)ZH(X,p)—m;:\IQXZSE@ (pT\lm> (B7)
=H(x,p)—Ql. (B8)
Equation(B5) implies that
2Nl [+ Ot
X= \/%co{ N ) (B9)

On substitution of this last formula into E¢B6), we obtain

(B10)

p=—+V2Nmwl sin(

o+ Ot
N
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